A designer drug is a structural or functional analog of a controlled substance that has been designed to mimic the pharmacological effects of the original drug, while avoiding classification as illegal and/or detection in standard . Designer drugs include psychoactive substances that have been designated by the European Union, Australia, and New Zealand, as new psychoactive substances ( NPS) as well as analogs of performance-enhancing drugs such as designer steroids.
Some of these designer drugs were originally synthesized by academic or industrial researchers in an effort to discover more potent derivatives with fewer side effects and shorter duration (and possibly also because it is easier to apply for patents for new molecules) and were later co-opted for recreational use. Other designer drugs were prepared for the first time in clandestine laboratories. Because the efficacy and safety of these substances have not been thoroughly evaluated in animal and human trials, the use of some of these drugs may result in unexpected side effects.
The development of designer drugs may be considered a subfield of drug design. The exploration of modifications to known active drugs—such as their structural analogues, , and derivatives—yields drugs that may differ significantly in effects from their "parent" drug (e.g., showing increased potency, or decreased side effects). In some instances, designer drugs have similar effects to other known drugs, but have completely dissimilar chemical structures (e.g. JWH-018 vs THC). Despite being a very broad term, applicable to almost every synthetic drug, it is often used to connote synthetic recreational drugs, sometimes even those that have not been designed at all (e.g., LSD, the psychedelic side effects of which were discovered unintentionally).
In some jurisdictions, drugs that are highly similar in structure to a prohibited drug are illegal to trade regardless of that drug's legal status (or indeed whether or not the structurally similar analogue has similar pharmacological effects). In other jurisdictions, their trade is a legal grey area, making them grey market goods. Some jurisdictions may have analogue laws that ban drugs similar in chemical structure to other prohibited drugs, while some designer drugs may be prohibited irrespective of the legal status of structurally similar drugs; in both cases, their trade may take place on the black market.
Because the government was powerless to prosecute people for these drugs until after they had been marketed successfully, laws were passed to give the DEA power to emergency schedule chemicals for a year, with an optional 6-month extension, while gathering evidence to justify permanent scheduling, as well as the analogue laws mentioned previously. Emergency-scheduling power was used for the first time for MDMA. In this case, the DEA scheduled MDMA as a Schedule I drug and retained this classification after review, even though their own judge ruled that MDMA should be classified Schedule III on the basis of its demonstrated uses in medicine. The emergency scheduling power has subsequently been used for a variety of other drugs including 2C-B, AMT, and Benzylpiperazine. In 2004, a piperazine drug, TFMPP, became the first drug that had been emergency-scheduled to be denied permanent scheduling and revert to legal status.
The late 1980s and early 1990s also saw the re-emergence of methamphetamine in the United States as a widespread public health issue, leading to increasing controls on precursor chemicals in an attempt to cut down on domestic manufacture of the drug. This led to several alternative stimulant drugs emerging, the most notable ones being methcathinone and 4-methylaminorex, but, despite attracting enough attention from authorities to provoke legal scheduling of these compounds, their distribution was relatively limited in extent and methamphetamine continued to dominate the illicit synthetic stimulant market overall.
In 2004, the US Drug Enforcement Administration raided and shut down several Internet-based research chemical vendors in an operation called Web Tryp. With help from the authorities in India and China, two chemical manufacturers were also closed. Many other internet-based vendors promptly stopped doing business, even though their products were still legal throughout much of the world.
Most substances that were sold as "research chemicals" in this period of time are hallucinogens and bear a chemical resemblance to drugs such as psilocybin and mescaline. As with other hallucinogens, these substances are often taken for the purposes of facilitating spirituality entheogen, Psychedelic drug or recreation. Some research chemicals on the market were not psychoactive, but can be used as precursors in the synthesis of other potentially psychoactive substances, for example, 2C-H, which could be used to make 2C-B and 2C-I among others. Extensive surveys of structural variations have been conducted by pharmaceutical corporations, universities and independent researchers over the last century, from which some of the presently available research chemicals derive. One particularly notable researcher is Alexander Shulgin, who presented syntheses and pharmacology explorations of hundreds of substances in the books TiHKAL and PiHKAL (co-authored with Ann Shulgin), and served as an expert witness for the defense in several court cases against manufacturers of psychoactive drugs.
The majority of chemical suppliers sold research chemicals in bulk form as powder, not as pills, as selling in pill form would invalidate the claims that they were being sold for non-consumptive research. Active dosages vary widely from substance to substance, ranging from micrograms to hundreds of milligrams, but while it is critical for the end user to weigh doses with a precision scale, instead of guessing ("eyeballing"), many users did not do this and this led to many emergency room visits and several deaths, which were a prominent factor leading to the emergency scheduling of several substances and eventually Operation Web Tryp. Some compounds such as 2C-B and 5-Meo-DiPT did eventually increase in popularity to the point that they were sold in pill form to reach a wider market, and acquired popular street names ("Nexus" and "Foxy," respectively). Once a chemical reaches this kind of popularity, it is usually just a matter of time before it is added to the list of scheduled (i.e., illegal) drugs.
The late 1990s and early 2000s also saw the first widespread use of novel by athletes in competition. Steroids had been banned by the International Olympic Committee since 1976, but due to the large number of different anabolic agents available for human and veterinary use, the ability of laboratories to test for all available drugs had always lagged behind the ability of athletes to find new compounds to use. The introduction of increasingly formalised testing procedures, especially with the creation of the World Anti-Doping Agency in 1999, made it much more difficult for athletes to get away with using these drugs without detection, which then led to the synthesis of novel and potent anabolic steroid drugs such as tetrahydrogestrinone (THG), which were not detectable by the standard tests.
Mephedrone and the marked somewhat of a turning point for designer drugs, turning them from little known, ineffective substances sold in head shops to powerful substances able to compete with classical drugs on the black market. Mephedrone especially experienced a somewhat meteoric rise in popularity in 2009 and the resulting media panic resulted in its prohibition in multiple countries. Following this there was a considerable emergence of other cathinones which attempted to mimic the effects of mephedrone, and with a newly attracted customer base, plenty of money to drive innovation.
Subsequently, the market rapidly expanded, with more and more substances being detected every year. In 2009, the EMCDDA's early warning system discovered 24 new drugs. In 2010, it found another 41; in 2011, another 49; and in 2012, there were 73 more. In 2013, a further 81 were identified: a total of 268 new drugs in just four years. These have not been limited to cathinones, with 35% being cannabinoids and the rest being composed of stimulants, , psychedelics, dissociatives and to a lesser extent, every other class of drugs, even ibogoids and nootropics. The largest group of drugs being monitored by the EMCDDA is synthetic cannabinoids, with 209 different synthetic cannabinoids reported between 2008 and 2021 - including 11 new cannabinoids identified for the first time in 2020.
Since 2019, highly potent nitazenes (benzimidazole opioids) have proliferated as ″new synthetic opioids″ in the North American and European narcotics markets and as such have become a formative component of the opioid epidemic in the United States. Overdoses of nitazene opioids have led to several hundred documented fatalities.
In the US, similar descriptions ("bath salts" is the most common) have been used to describe mephedrone as well as methylone and methylenedioxypyrovalerone (MDPV). Combined with labeling that they are "not for human consumption," these descriptions are an attempt to skirt the Federal Analog Act which forbids drugs that are "substantially similar" to already classified drugs from being sold for human use.
Synthetic cannabinoids are known under a variety of names including K2, Spice, Black Mamba, Bombay Blue, Genie, Zohai, Banana Cream Nuke, Krypton, and Lava Red. They are often called "synthetic marijuana," "herbal incense," or "herbal smoking blends" and often labeled "not for human consumption."
In the United States, the Controlled Substances Act was amended by the Controlled Substance Analogue Enforcement of 1986, which attempted to ban designer drugs pre-emptively by making it illegal to manufacture, sell, or possess chemicals that were substantially similar in chemistry and pharmacology to Schedule I or Schedule II drugs.
Other countries have dealt with the issue differently. In some, the new drugs are banned as they become a concern, as in Germany, Canada, the United Kingdom, and Sweden. In Sweden, the police and customs may also seize drugs that are not on the list of drugs covered by the anti-drug laws if the police suspect that the purpose of the holding is related to drug abuse. Following a decision by a prosecutor, the police may destroy the seized drugs. Nu beslagtar svenska tullen lagliga droger, Sveriges Radio, 23 April 2011
In Ireland, the Criminal Justice (Psychoactive Substances) Act 2010 bans substances based on their psychoactive effect, and was introduced as a catch-all to address the time lag between new substances appearing and their being banned individually. In the United Kingdom, the Psychoactive Substances Act 2016 adopts a similar approach.
Some countries, such as Australia, have enacted generic bans but based on chemical structure rather than psychoactive effect: if a chemical fits a set of rules regarding substitutions and alterations of an already-banned drug, then it too is banned.Commonwealth Criminal Code Act 1995 s 314.1(2) Brazil adopted the same model as Australia, in a recent ruling from ANVISA, which is responsible to define what constitute drugs.
|
|